
ENHANCING AUTHENTICATION SECURITY: 

A PYTHON-BASED SYSTEM FOR BRUTE 

FORCE ATTACK PREVENTION

BEATRICE MUTEGI

UNIVERSITY OF ESSEX: MASTER OF SCIENCE IN CYBERSECURITY

SUPERVISORS: DR. OLIVER BUCKLEY AND DR. BAKHTIYAR AHMED



2

1. PROBLEM & GAP

Brute force attacks are still a major cybersecurity threat, where 

attackers guess credentials repeatedly to break into systems (Abdulkader , 

et al., 2015), (Deep, et al., 2019).

Despite existing tools like CAPTCHA and MFA, many Python/Django 

systems still lack integrated, user-friendly defenses (Jimmy, 2024).

My research addresses this gap by developing a Django-based multi-

layered authentication system with a framework that is robust, cost-

effective, and user-conscious.



3

2. AIM & RESEARCH QUESTIONS

The goal was to create a secure, usable Python-Django login 

system that blocks brute force attempts without frustrating users.

It focused on:

• Effective mitigation methods,

• Key vulnerabilities in Django login systems,

• Usability vs. security trade-offs,

• Leveraging Django's native tools for protection.



4

3. LITERATURE REVIEW HIGHLIGHTS 

Reviewed authentication methods whereby:

• Traditional methods like password-only/SFA, are vulnerable,

• Modern methods like 2FA, biometrics, and blockchain offer strong 

security but face usability and complexity challenges.

Key insight: 

Single defenses are insufficient and multi-layered security is 

essential, with careful balance between protection and usability.



5

4. METHODOLOGY

The study used the Design Science Research approach (Hevner et 

al., 2004) with Agile sprints across 12 development cycles. 

It combined qualitative and quantitative methods, including literature 

review, STRIDE and OWASP Top 10 threat modelling, simulated attacks, and 

heuristic evaluations (Creswell, 2017; Nielsen & Molich, 1990).

Since no humans were involved, the ethical considerations focused on using 

synthetic data and ensuring secure, responsible testing in isolated 

environments.



6

5. SYSTEM 
ARCHITECTURE AND 
TOOLS

The system was built with 

Python (3.10), Django 

(4.x). 

On the right is the 

interaction it had with its 

components.



The key tools and libraries used were(Django Software Foundation, 

2023):

• django.contrib.auth: Authentication

• Google reCAPTCHA v2: CAPTCHA protection

• django-ratelimit: Rate-limiting

• django_axes / axes.signals.user_locked_out: Account lockouts on 

repeated login failures

• Pyotp: Time-based OTPs via email

• default_token_generator: Secure email verification tokens
7



• django-lockout: Lockout mechanism

• django.core.cache: Store failed login attempts

• Logging: Audit login attempts and lockouts

• http.client: IP geolocation (ip-api.com)

• user_agents: Parse device/user-agent info

• Messages: Frontend user feedback

• And many others.

8



9

6. SYSTEM FEATURES

The final system integrates the following features. 

• Progressive Account Lockouts: Triggered after 3 to 10 failed logins with 

increasing lockout delays.

• IP-Based Rate Limiting: Mitigates distributed attacks (Nurhaida & Bisht, 2022).

• Google reCAPTCHA v2: Triggered after the 3rd failed login to filter out bots 

(Google, 2025).

• Time-Based OTP (2FA): Email OTPs expire in 10 minutes and are required for 

high-privilege logins (NIST, 2025).

• Time-based Email Token Verification: 10-min expiry window to prevent fake or 

unintended signups.



 Device Fingerprinting and GeoIP: Logs OS, browser, and location during lockouts 

(Yonkeu, 2020).

 Session Management: Auto logout after 30 minutes of inactivity and concurrent 

logins prevention using last activity tracking (Django, n.d.; Fluid Attacks, 2024).

 Password Management: Used PBKDF2 hashing, CSRF token and custom 

validators to enforce secure passwords and prevent reuse (Crudu & Team, 2024), 

(Django Software Foundation, 2023).

 Forced Password Expiry: Users are forced password reset after every 90 days.

 User Enumeration Prevention: Error messages generalized to “Invalid credentials” 

to prevent attackers from distinguishing valid usernames (Macsinoiu, 2024; Agghey

et al., 2021).

10



 Error Handling & Feedback: Provides clear user messages and robust logging.

 Email Alert: Both Admin and user are notified by email after a lockout event.

 Role-Based Access Control (RBAC) & Authorization: View access is role-based 

using decorators (Django, n.d.; Nurhaida & Bisht, 2022; Yonkeu, 2020).

 A dedicated admin dashboard: Built with Chart.js, to show failed login heatmaps, 

lockout trends, CAPTCHA stats, and OTP usage analytics.

 Password Guidelines Modal: Displays password strength guidelines on forms (Das 

et al., 2014). 11



12

The activity diagram of the 
login and signup logic is 
shown on the diagram.



13

7. TESTS, RESULTS AND EVALUATIONS

Test Type Result Evaluation

Brute-force Attack Simulation Lockout at 5 attempts; 98% blocked Highly effective

Brute-force Distributed Attack 

Simulation

IP lockouts triggered Effective; 

Global throttling could enhance

CAPTCHA Logic Triggered after 3 failures Blocks bots with minimal UX impact

OTP Expiry Simulation Rejected expired OTPs Enforces timely access

Email Token Expiry SImulation Blocked expired signups Prevents fake/inactive accounts

Session Expiry Test Auto logout after 30 mins Secure session lifecycle

Password Expiry Simulation Forced reset after 90 days Enforces strong password hygiene

Concurrent Sessions Simulation Detection validated Supports session control enforcement

Logging & Alerts Test IP/device logged; email alerts sent Strong audit trail and response



Additionally, the admin dashboard effectively visualizes lockout logs, providing 

actionable security insights.

Login, signup, and password reset workflows function correctly with proper 

validation and redirection.

Usability testing using Nielsen’s heuristics showed a simple User Interface with 

clear feedback (e.g., expired OTPs, invalid credentials) that protects system details; 

thus, following OWASP guidelines.

Overall, the system blocked over 98% of brute-force attempts while delivering 

valuable admin insights.

14



15

8. CHALLENGES AND PROPOSED SOLUTIONS
Challenge / Limitation Description Proposed Solution

hCAPTCHA Validation Failures Integration issues led to replacement Switched to Google reCAPTCHA v2

CAPTCHA v2 AI Bot Bypass Potential vulnerability to advanced bots
Upgrade to reCAPTCHA v3 + behavioural 

analytics

Third-Party Dependency
Reliance on Google services risks 

downtime

Add fallback local bot detection 

mechanisms

Limited Usability Testing No formal accessibility audits conducted
Conduct usability studies & accessibility 

audits

Dashboard lacks AI intelligence No automated threat alerts or scoring Integrate ML-based anomaly detection

Controlled Simulations Limitations Simulated attacks lack real-world diversity
Use threat intelligence & chaos 

engineering

Geolocation Accuracy IP-based geo-location error prone
Use HTML5 geolocation & enhanced 

device fingerprinting

Scalability Constraints Only tested locally
Perform load testing, add Redis caching, 

async tasks

Weak Passwords Creation No password generator provided Add client-side password generation tool

User Accessibility Constraints Not fully inclusive design
Implement audio CAPTCHA, WCAG-

compliant UI



16

Moreover, there were also technical challenges in integrating multiple 

security features without introducing new vulnerabilities or excessive 

complexity.

To address emerging threats, the system also needs ongoing 

maintenance and advanced attack simulations and testing.

Future work could focus on further automation, adaptive security 

measures, and even deeper integration with biometric or passwordless

authentication.

As well as more human involvement in usability testing.



17

9. CONCLUSION AND RECOMMENDATION

This Django-based solution provides multi-layered authentication tailored for small to mid-size 

organizations, greatly improving protection against brute force attacks while preserving usability and cost-

effectiveness. 

It’s modular, easy to deploy, and compatible with emerging technologies like biometrics or 

blockchain.

Furthermore, the admin dashboard offers real-time threat visibility and logs, enabling faster 

response; an advantage often missing in smaller solutions.

It also highlights the importance of continuous research and adaptation in the face of evolving 

cyber threats.

My recommendation is to adopt multi-layered security that is both usable and scalable; 

especially for sensitive data and systems.



THANK YOU

18



19

REFERENCES
Abdulkader , S., Atia, A. & Mostafa , M.-S., 2015. Authentication systems: principles and threats. Computer and Information Science, 

8(3).

Agghey , A. Z. et al., 2021. Detection of Username Enumeration Attack on SSH Protocol: Machine Learning Approach. Symmentry, 

13(11), p. 2192.

Creswell, J. W., 2017. Research design: Qualitative, quantitative, and mixed methods approaches. 3rd ed. Lincoln: Sage 

Publications.

Crudu, V. & Team, M. R., 2024. Best Practices for Django User Authentication. [Online] 

Available at: https://moldstud.com/articles/p-best-practices-for-django-user-authentication

[Accessed 30 April 2025].

Das, A., Bonneau, J., Caesar, M. & Borisov, N., 2014. The Tangled Web of Password Reuse. [Online] 

Available at: https://www.researchgate.net/publication/269197028_The_Tangled_Web_of_Password_Reuse

[Accessed 30 April 2025].

Deep, G. et al., 2019. Authentication Protocol for Cloud Databases Using Blockchain Mechanism. Sensors, 19(20), p. 4444.

Django Software Foundation, 2023. Security in Django. [Online] 

Available at: https://docs.djangoproject.com/en/5.2/topics/security/

[Accessed 30 April 2025].



20

Nielsen, J. & Molich, R., 1990. Heuristic Evaluation of User Interfaces. Denmark, s.n.

NIST, 2025. NIST Special Publication 800-63B. [Online] 

Available at: https://pages.nist.gov/800-63-3/sp800-63b.html

[Accessed 30 April 2025].

Nurhaida , I. & Bisht , R. K., 2022. Python for Cyber Security. [Online] 

Available at: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://cs4all.studentscenter.in/assets/Pyt

hon%20CS/Python%20for%20Cyber%20Security%20Manual.pdf

[Accessed 30 April 2025].

OWASP, 2021. OWASP Top Ten. [Online] 

Available at: https://owasp.org/www-project-top-ten/

[Accessed 30 April 2025].



21

Yonkeu, S., 2020. Role-Based Access Control in Django. [Online] 

Available at: https://dev.to/yokwejuste/role-based-access-control-in-django-4j1d

[Accessed 30 April 2025].

Zhang, X. J., Li, Z. & Deng, H., 2017. Information security behaviors of smartphone users in China: an empirical 

analysis. The Electronic Library, 35(6), pp. 1177-1190.

Django Software Foundation, 2025. Using Sessions. [Online] 

Available at: https://docs.djangoproject.com/fr/5.2/topics/http/sessions/

[Accessed 01 May 2025].

Fluid attacks: help center, 2024. Concurrent sessions - Python. [Online] 

Available at: https://help.fluidattacks.com/portal/en/kb/articles/criteria-fixes-python-062

[Accessed 01 April 2025].

Google, 2025. recaptcha how it works. [Online] 

Available at: https://cloud.google.com/security/products/recaptcha#how-it-works

[Accessed 30 April 2025].



22

Hevner, A. R., March, S. . T., Ram, S. & Park, J., 2004. Design Science in Information Systems Research. 

MIS Quarterly, 28(1), pp. 75-105.

Jimmy, F., 2024. Cybersecurity Threats and Vulnerabilities in Online Banking Systems. International 

Journal of Scientific Research and Management (IJSRM), 12(10), pp. 1631-1646.

Macsinoiu, V. E., 2024. Unveiling User Enumeration Attacks: Methods, Impacts and Mitigation Strategies. 

International Journal of Information Security and Cybercrime (IJISC), 26(2), pp. 59-64.

National Cyber Security Centre, 2018. GDPR security outcomes. [Online] 

Available at: https://www.ncsc.gov.uk/guidance/gdpr-security-outcomes

[Accessed 20 July 2022].


